Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein-containing human apolipoprotein B100.

نویسندگان

  • Christofer Flood
  • Maria Gustafsson
  • Robert E Pitas
  • Lorenzo Arnaboldi
  • Rosemary L Walzem
  • Jan Borén
چکیده

OBJECTIVE The aim of this study was to investigate the molecular mechanism for changes in proteoglycan binding and LDL receptor affinity on two compositional changes in LDL that have been associated with atherosclerosis: cholesterol enrichment of the core and modification by secretory group IIA phospholipase A2 (sPLA2) of the surface. METHODS AND RESULTS Transgenic mice expressing recombinant apolipoprotein (apo) B and sPLA2 were generated. Recombinant LDL were isolated and tested for their proteoglycan and LDL receptor-binding activity. The results show site A (residues 3148-3158) in apoB100 becomes functional in sPLA2-modified LDL and that site A acts cooperatively with site B (residues 3359-3369), the primary proteoglycan-binding site in native LDL, in the binding of sPLA2-modified LDL to proteoglycans. Our results also show that cholesterol enrichment of LDL is associated with increased affinity for proteoglycans and for the LDL receptor. This mechanism is likely mediated by a conformational change of site B and is independent of site A in apoB100. CONCLUSIONS Site A in apoB100 becomes functional in sPLA2-modified LDL and acts cooperatively with site B resulting in increased proteoglycan-binding activity. The increased binding for proteoglycans of cholesterol-enriched LDL is solely dependent on site B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Effect of ?-Tocopherol, Ascorbic Acid and Lycopene on Low Density Lipoprotein Glycation

Nonenzymatic glycation of low density lipoprotein (LDL) is a reaction of glucose and other reducing sugars with apolipoprotein B100 (apo-B100) lysine residues. In diabetes, this reaction is greatly accelerated and is important in the pathogenesis of diabetic complications. The objective of this study was to investigate in vitro effects of ?-tocopherol, ascorbic acid and lycopene on LDL glycatio...

متن کامل

In Vitro Effect of ?-Tocopherol, Ascorbic Acid and Lycopene on Low Density Lipoprotein Glycation

Nonenzymatic glycation of low density lipoprotein (LDL) is a reaction of glucose and other reducing sugars with apolipoprotein B100 (apo-B100) lysine residues. In diabetes, this reaction is greatly accelerated and is important in the pathogenesis of diabetic complications. The objective of this study was to investigate in vitro effects of ?-tocopherol, ascorbic acid and lycopene on LDL glycatio...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice.

We used wild-type (WT) mice and mice engineered to express either apoB-100 only (B100 mice) or apoB-48 only (B48 mice) to examine the effects of streptozotocin-induced diabetes (DM) on apoB-100- and apoB-48-containing lipoproteins. Plasma lipids increased with DM in WT mice, and fat tolerance was markedly impaired. Lipoprotein profiles showed increased levels and cholesterol enrichment of VLDL ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2004